Discrete Gaussian curvature flow for piecewise constant Gaussian curvature surface




A method is presented for generating a discrete piecewise constant Gaussian curvature (CGC) surface. An energy functional is first formulated so that its stationary point is the linear Weingarten (LW) surface, which has a property such that the weighted sum of mean and Gaussian curvatures is constant. The CGC surface is obtained using the gradient derived from the first variation of a special type of the energy functional of the LW surface and updating the surface shape based on the Gaussian curvature flow. A filtering method is incorporated to prevent oscillation and divergence due to unstable property of the discretized Gaussian curvature flow. Two techniques are proposed to generate a discrete piecewise CGC surface with preassigned internal boundaries. The step length of Gaussian curvature flow is adjusted by introducing a line search algorithm to minimize the energy functional. The effectiveness of the proposed method is demonstrated through numerical examples of generating various shapes of CGC surfaces.


Comments are closed